IAS Seminar

Model Checking Embedded Systems

Lucas Cordeiro
lucascordeiro@ufam.edu.br

Career Summary

BSc in Electrical Engineering, MSc/PhD in Computer Science

— algorithms, software engineering, formal verification, and
embedded systems

« 39 reviewed publications, including 6 journal papers and 33
workshop/conference contributions

— distinguished paper awards at SAC'08 and ICSE'11, and two
bronze medals at TACAS’12 and TACAS’13

o developer of XMPM, STB225, and ESBMC tools
» research collaborations with Southampton and Stellenbosh
« research funding from Samsung, Nokia, and Royal Society

e research team leader (one PhD, four MSc, and two BSc
students)

— acting as course leader of Electrical Engineering

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles
— airplanes

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles
— airplanes
— communication systems

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles

— airplanes

— communication systems
— consumer electronics

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles

— airplanes

— communication systems
— consumer electronics

— medical systems

Embedded systems are ubiquitous
but their verification becomes more difficult.

« embedded system is part of a well- specmed Iarger system
(intelligent product) R—

— automobiles

— airplanes

— communication systems
— consumer electronics

— medical systems

e provide a number of distinctive characterlstlcs
— usually implemented in DSP, FPGA and uC (mass production)

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles
— airplanes
— communication systems

— consumer electronics
— medical systems

e provide a number of distinctive characteristics
— usually implemented in DSP, FPGA and uC (mass production)
— functionality determined by software in read-only memory

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles

— airplanes

— communication systems
— consumer electronics

— medical systems

e provide a number of distinctive characteristics
— usually implemented in DSP, FPGA and uC (mass production)
— functionality determined by software in read-only memory
— multi-core processors with scalable shared memory

Embedded systems are ubiquitous
but their verification becomes more difficult.

 embedded system is part of a well-specified larger system
(intelligent product)

— automobiles
— airplanes
— communication systems

— consumer electronics
— medical systems

e provide a number of distinctive characteristics
— usually implemented in DSP, FPGA and uC (mass production)
— functionality determined by software in read-only memory
— multi-core processors with scalable shared memory
— limited amount of energy

Verification Challenges

« verification methodologies for embedded systems

assert

—

(x>0)

Specification

Embedded Software data
Microprocessor :
model [1..7]

Generate test
vectors with
constraints

 verification of embedded systems raises additional

challenges

— handle concurrent software

— meet time and energy constraints

— legacy designs (usually written in low-level languages)

e Improve coverage and reduce verification time

Bounded Model Checking (BMC)

Basic Idea: check negation of given property up to given depth

4) . property
0o O -, O =0, O "0 | O«
transition ® > @ r® .- @——@
system - M M, M, M, My
_counterexample trace) bound

 transition system M unrolled k times
— for programs: loops, arrays, ...
 translated into verification condition § such that

) satisfiable iff § has counterexample of max. depth k

* has been applied successfully to verify (embedded) software

6

BMC of Multi-threaded Software

e concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

— most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

Thread T, Thre
CE

a,

d; context

ad T, switch
b)
b, a, b,

| N
I

BMC of Multi-threaded Software

e concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

— most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

Thread T, Thre
CE

a,

b
ad T, 1 context

switch
b,
)
a b,

b,

BMC of Multi-threaded Software

e concurrency bugs are tricky to reproduce because they
usually occur under specific thread interleavings

— most common errors: 67% related to atomicity and order
violations, 30% related to deadlock [Lu et al.’08]

- b
Thread T, Thread T, L context
number of b switeh
— a
executions: O(ns) ' ! :>
concurrency bugs are shallow [Qadeer&Rehof’05] a/\t‘) l
: 2 2 a
« hypothesis: l l f
— SAT/SMT solvers produce unsatisfiable
cores that allow removing possible b, a, a,

undesired models of the system

BMC of SystemC/C++

o SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

— object-oriented design and template classes

- . : executable
r = => g++ compiler fila
Standard ' >{ - |
Libraries of C++

C++ Programs

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

o SystemC consists of a set of C++ classes that simulates

CONQ template <class _Tp, class _Alloc>void vector<_Tp,
Alloc>:: M _fill_insert(iterator __position, size_type _n,
const Tp& x){

if(__n!=0){
r if (size_type(_M_end_of storage - M finish) >=_ n){ cutable
_Ip_x_copy=__x; file

o Standy const size_type _elems_after= M finish - position;
Librares ¢ iterator __old_finish = _M_finish;
if (__elems_after> n){
uninitialized_copy(_M_finish - n, M finish, M finish);
M finish+= n;
copy_backward(__position, __old_finish-__n, old_finish);
the stan fill(__position, __position+ __n, _x_copy);

— ol

BMC of SystemC/C++

o SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

— object-oriented design and template classes

rj‘ o r==> g++ compiler |——> exec;;:éable)

|

Standard L-)F =
Libraries of C++ |

rj_ : C++ Programs

Operational Model

the standard C++ library complicates the VCs unnecessarily

BMC of SystemC/C++

o SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

cli]" = [i. (0 < i < position
= {, position < i < position + n
= c[i —nl, position +n < i < size +n
L c.size’ = c.size +n
c.capacity’ = c.capacity x glloga (Fpay)]
o position’ = position

Ret = position

th OLCATTUTCATU s T T 1TTT uu_y \JUIIIPII\JMLL:\J 1O VOUOJI UIIIIL:UL:\J\JLJI.IIIy

BMC of SystemC/C++

o SystemC consists of a set of C++ classes that simulates
concurrent processes using plain C++

— object-oriented design and template classes

Operational Model

r——

I
I
Standard L—-)r = - -
Libraries of C++ 1 :

C++ Programs |

g++ compiler

|
- ==>

ESBMC++

_,C
_,C

executable
file
verification

result)

the standard C++ library complicates the VCs unnecessarily

* hypothesis:

— abstract representation of the standard C++ libraries to
conservatively approximate their semantics

BMC of Discrete-Time Systems

« discrete-time systems consist of a mathematical operator
that maps one signal into another signal

MAX 2k 1 -
X(n) Y(n) = Tlx(n)] 1| '
’ T [] g war overflo
0
05l Wrap round
N M
Y ==Y aym-10+) hxtn-k)
k=1 k=0
MIN = -2k-1

fixed-point implementation leads to errors due to the finite word-length

BMC of Discrete-Time Systems

« discrete-time systems consist of a mathematical operator
that maps one signal into another signal

X(n) Y(n) =Tx(n)] |
> T [] > -

N

M
ym) ==) apy(-k +) bex(n—K)
k=0

k=1

- limit cycle

0 =0

fixed-point implementation leads to errors due to the finite word-length

BMC of Discrete-Time Systems

« discrete-time systems consist of a mathematical operator
that maps one signal into another signal

X(n) Y(n) = T[x(n)] liiming © (N X T) < D)

| T > Vs
time
constraint @
N

M
ym)=—) ary(n—Kk)+) by x(n—k) 1/Fs ms

k=1

fixed-point implementation leads to errors due to the finite word-length
* hypothesis:

— discrete-time systems realization has a rigid structure

— simplify the models according to the property to be verified

9

Software BMC using ESBMC

e program modelled as state transition system int main() {

— state: program counter and program variables :Pt(xaz[i%)' %
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes e;iz]: .
* program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations }
— context switches 1
e unfolded program optimized to reduce blow- up
— constant propagation } T
crucial A—
— forward substitutions

Software BMC using ESBMC

e program modelled as state transition system int main() {

— state: program counter and program variables :Pt(xa:[fg)" %
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes ef[iz]:l;
e program unfolded up to given bounds assert(a[i+1]==1);
— loop iterations }
— context switches 1
« unfolded program optimized to reduce blow-up
— constant propagation _ gy =%, ==0
— forward substitutions } crucial o1 = 2 WITH [10:=0]
 front-end converts unrolled and 5 = 8, WITH [2+i5:=1]

a,=0,7a;:8,

optimized program into SSA L= a [+ == 1

Software BMC using ESBMC

e program modelled as state transition system int main() {

— state: program counter and program variables :?t(xa:[i)' %
— derived from control-flow graph a[i]=0;
— checked safety properties give extra nodes ef[iz]:l-

e program unfolded up to given bounds assert(afi+1]==1);
— loop iterations }
— context switches 1

e unfolded program optimized to reduce blow-up _
— constant propagation } rucial glgj:ixls;i)(amimo)
— forward substitutions C:=| D2, =3, |

« front-end converts unrolled and Sagstt;ge(aizaf)
optimized program into SSA i, 200, <2

« extraction of constraints C and properties P *= Sf:;:;’;iﬁfjj}
— specific to selected SMT solver, uses theories [Osdet(ani, +1)=1

o satisfiability check of C A =P

Context-Bounded Model Checking in ESBMC

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

... combines
 symbolic model checking: on each individual interleaving

« explicit state model checking: explore all interleavings

— bound the number of context switches allowed among
threads

Lazy Exploration of the Reachability Tree

- .

Uo ' tmans0, <——— active thread, context bound

initial state ——> vall=0, val2=0, :
i m1=0, m2=0,... <t global and local variables

Vg ttwoStageili SyntaX'direCted]
vall=0, val2=0 -
' ’ expansion rules
m1l=1, m2=0,... P
/ CS1
Uy ttwoStage’Z’
vall=1, val2=0,)
m1=1, m2‘0 Interleaving completed, so

call single-threaded BMC

/ o
execution paths
15

Lazy Exploration of the Reachability Tree

- 3

i Uoitnan0, <—— active thread, context bound
initial state —* vall1=0, val2=0, _
' ~ <«— global and local variables

. *

\

V. ttwoStage’]-’
vall=0, val2=0, backtrack to last unexpanded node
ml1=1, m2=0,... :
and continue
// _____________________ J
Uy ttwoStage’Z’ US: treader’2’ \
vall=1, val2=0, vall=0, val2=0, - : :
m1=1 m2=0.... m1=1 m2=0.... symbolic execution can statically

determine that path is blocked

rAY
/ AR (encoded in instrumented mutex-op)

/ /'%
/
k- ~

——> execution paths
----- > blocked execution paths (eliminated) Y

Lazy Exploration of the Reachability Tree

¢ .
.

: Uo:tnan0, <——— active thread, context bound
initial state —> vall1=0, val2=0, _
i m1=0 m2=0,... < global and local variables

Ul: 1:twoStage’:I-’ U4: treader!J-!
vall=0, val2=0, vall=0, val2=0,
m1l=1, m2=0,... m1=1, m2=0,...

CS31 /\

N
N /

U2: 1:twoStage’Z’ U3: treader’2’ U5: ttwoStage’Z’ U6: treaderlzl
vall=1, val2=0, vall=0, val2=0, vall=0, val2=0, vall=0, val2=0,
ml=1, m2=0,... ml=1, m2=0,... ml=1, m2=0,... m1l=1, m2=0,...

/ AN AN /\

/ y " y " / \
’ \ ’ \
b | b ~

——> execution paths
----- > blocked execution paths (eliminated)

Achievements

* proposed first SMT-based context-BMC for full C

— verifies single- and multi-threaded software (ASE’09,
distinguished paper award at ICSE’11, TSE'12)

o discrete-time systems (SBrT7'13) and C++ (ECBS’13)
— combines plain BMC with k-induction (TACAS'13, SBESC'13)

— found undiscovered bugs related to arithmetic overflow, buffer
overflow, and invalid pointer in standard benchmarks

» confirmed by the benchmark’s creators (NOKIA, NEC, NXP)

— most prominent BMC tool (two bronze medals in the overall
ranking at TACAS’12 and TACAS’13)

e users of our ESBMC model checker

— Airbus, Fraunhofer-Institut (Germany), LIAFA laboratory
(France), University of Tokyo (Japan), Nokia Institute of
Technology (Brazil)

